

AIMING TO THE PHYSICAL INTERNET A Practical Approach Napoli 29/9/2016

Sergio Barbarino

Research Fellow P&G Supply Network Innovation Center.

This document contains proprietary, confidential, and copyrighted (under the laws of the United States and other countries) materials of The Procter & Gamble Company (P&G). This document may not be duplicated, and the licensed information therein may not be used or disclosed in whole or in part for any purpose other than as authorized by P&G. Any use or disclosure in whole or in part of licensed information without the express written permission of P&G is prohibited.

Alliance for Logistics Innovation through Collaboration in Europe

SUPPLY NETWORK INNOVATION CENTER Sergio Barbarino, FRSC, MBA, MSC

Born in Naples 1967

Chemical Engineer in 1991 (Federico II Napoli) MBA 2004 Solvay Business School Brussels **1991: Joined P&G in Belgium – Process Development Mr. Clean/Viakal 1998: Italy – Section Head Global Bleach Process design** Saved 7\$/su on 30% of Bleach business by qualifying the Transiberian line **2002:** Relocated to Belgium – <u>Principal Engineer</u> Process Breakthrough Qualified the Flexibags for DISH paste supply to Philippines, Mexico, Argentina, Japan (5 MM\$ savings/year) **2007: Cincinnati Ohio – Leader Low cost Manufacturing demo project 2008: Brussels First Externally funded project on Microprocessing: P&G Leader of IMPULSE and F3 FP7 Projects 2009: Founder & Leader: P&G Supply Network Innovation Center 2011:** <u>Research Fellow</u> (P&G Top Technical Talent Position)

This document contains proprietary, confidential, and copyrighted (under the laws of the United States and other countries) materials of The Procter & Gamble Company (P&G). This document may not be duplicated, and the licensed information therein may not be used or disclosed in whole or in part for any purpose other than as authorized by P&G. Any use or disclosure in whole or in part of licensed information without the express written permission of P&G is prohibited. 3

ASSET J-FO T

Colloquium stimuli:

This document contains proprietary, confidential, and copyrighted (under the laws of the United States and other countries) materials of The Procter & Gamble Company (P&G). This document may not be duplicated, and the licensed information therein may not be used or disclosed in whole or in part for any purpose other than as authorized by P&G. Any use or disclosure in whole or in part of licensed information without the express written permission of P&G is prohibited.

- Can we reduce footprint with labour? (2 drivers ->lower speed, more deadpile)
- Is it true it will be necessarily more expensive?
 - Is more expensive sustainable?

Toilet paper

Demand Variability

Unconstrained

Demand

SOURCE: Modified from OPTIANT TRAINING

For the products below what we have said so far is impossible to apply, why?

Electricity

Exercise

Wine

compo

Logistic is a growing

component of Product Costs

Why do we need a Physical Internet?

- Trends...
 - Flow exponential growth (even if they will not reach the sky)

- Shipments fragmentation
 - Shipment median weight divided by 4,5 from 160 kg in 1988 to 30 kg in 2004 Source IFSTTAR 2013

• A no cost illusion for the consumers

• Expectations: better services and economic support to growth

Supply Chains inefficiency

Transport inefficiency is a €160 Billions loss and 1.3% of EU27 CO2 footprint!!! **10 YEARS: ZERO IMPROVEMENT ON LOAD FACTORS**

- 180 160 140 120 100 80
 - billion euro

Why is that so?

Full, but only 25% of weight limit

60% empty, but at weight limit

This is bad for both profitability and environment

Total food waste along the value chain:

Using our Scale for Good

Food Waste Hotspots

We have established the waste profiles for 25 of the must frequently purchased products so that we can identify those areas where we should prioritize our activity. This infographic shows some of the key insights from five of the products we analysed and what we are doing to tackle weste across the supply web.

Grapes

- Trialling new varieties of grapes with a longer life.
- New techniques to protect the grapes e.g. plastic covers in rainy geographies
- Fixing orders to get more fruit direct from our growers to our depots to ensure fresher products for our customers
- Consistent messaging around storage information on pack, online and integrated in customer communication

Total Production Wasted: 24%

D <1% <1%

Apples

- Growers involved in trials to reduce pest/ disease in orchards by using natural predators
- Increased crop utilisation through different product ranges
- Consistent messaging around. storage information on pack, online and integrated in customer communication

Total Production Wasted: 40%

Agriculture & supply

- We make use of all our suppliers? projecto reduce waste on tarm-
- conditions for banana itansport
- More effective ordering of sinck.
- on how to handle bananas with care-

Bagged Salad

- Twin packs offer 'leatime now, eatime later'

Bakery

- Loss bread displayed in our in-store-

Physical Internet

Physical Internet Concept

An open network approach to **Physical Distribution:**

- By encapsulating any type of goods in standard modules
- Like in the Internet It allows the creation of a very tight and efficient network maximizing transport and logistic assets utilization.

The key to an open network approach: modules

O A generalization of containerization

Montreuil, B., Meller, R. D. and Ballot, E. (2010). Towards a Physical Internet : the impact on logistics facilities and material handling systems design and innovation. In: AL., K. G. E. (ed.) Progress in Material Handling Research. Material Handling Industry of America

17 November 2014

15

How containers changed everything in Ocean shipping

O The benefit of standard: the maritime container example

Cost evolution Source The Box, HAROPA & JB Hunt

ALICE Roadmaps

This document contains proprietary, confidential, and copyrighted (under the laws of the United States and other countries) materials of The Procter & Gamble Company (P&G). This document may not be duplicated, and the licensed information therein may not be used or disclosed in whole or in part for any purpose other than as authorized by P&G. Any use or disclosure in whole or in part of licensed information without the express written permission of P&G is prohibited.

A practical approach

Conserving Resources: Distribution Optimizing Outbound Transportation

Our strategies for fewer and friendlier miles:

- Flow management
- Operational excellence by optimizing our distribution networks and vehicle fill
- Shifting to intermodal transportation
- Collaboration

2020 Goal: 20% Aduction km/unit of volume

"Cube-Fill" Concept

Cube Fill **Optimising Light & Heavy Goods Mix**

Light Goods: Only 25% of weight limit

.

Heavy Goods: Only **40% of volume limit**

This is bad for both profitability and environment

Mixed Goods: Target 80% weight & volume

P&G TINA PROJECT 2008-2015

30% TonKms shifted with no compromise on cost

45 M tons of CO₂ reduction

Flow Focusing (parallel and roundtrips, High Frequency)

Big flows – Product mix (more company's = more potential) Show Industry Leadership

How it can evolve...

PHYSICAL INTERNET

PAST

All transportation by road

TINA/NINA - Dourges - Barking Collaborative Connection (Amiens - London)

TINA/NINA Italy - GS1-ECR Collaborative Connection (Pomezia - North of Italy)

CURRENT

Networked

New Intermodal Network Approach

FUTURE

WHY DO WE NEED A CHANGE **IN THE INTERMODALITY APPROACH?**

WE ARE NOT ABLE TO SET UP AND SUSTAIN INTERMODAL CONNECTIONS

NO CONNECTIVITY

HIGH COSTS

NO VOLUME

. O South Ferry South Ferry

LONG LEAD TIMES

NO FREQUENCY

NO VISIBILITY

WHY DO WE NEED A CHANGE **IN THE INTERMODALITY APPROACH?**

	EU 27 - FREIGHT TRANSPORT STATISTICS					
	ROAD			RAIL		
	NETWORK (1)	VOLUME (2)	INTENSITY (4)	NETWORK (3)	VOLUME (2)	INTENS
1995	47970	1289	26.9	227139	386	1.
2000	54719	1519	27.8	217857	404	1.
2005	62218	1794	28.8	212384	413	1.
2009	66814	1690	25.3	212693	361	1.
% CHANGE	+ 39%	+31%	-6%	-6%	-6%	09
(1)	Length of EU-27 Mot	orway Network in Kil	ometer			
(2)	Freight volume ship	ped in EU-27 in Ton-	Kilometer			
(3)	Length of EU-27 Rail	way Network in use	in Kilometer			
(4)	Million Ton-Kilomet	ter per Network Kilor	neter			

Source : EU Commision - Transportation Booklet

WHILE RAIL INFRASTRUCTURE IS UNDERUTILIZED

HOW WILL WE CHANGE THE INTERMODALITY APPROACH ?

THROUGH A NEW WAY IN WHICH WE LOOK AT INTERMODALITY.

OPEN NETWORK APPROACH

MULTIDIMENSIONAL COLLABORATION

THE ALPHA ALPHA CASE

ZARAGOZA REGION THE BEST ALPHA ALPHA GRASS

SYNCHROMODALITY

THE NETHERLANDS THE BEST MILK COWS

HOW DO WE GET THE GRASS TO THE COWS?

ALPHA ALPHA LOADS ARE NOT URGENT AND USED AS A FILLER

SYNCHROMODALITY

REGULAR LOAD

FROM A ONE LEAD TIME MODEL WITH PLANT STOCK

TO A MULTIPLE LEADTIME MODEL WITH PIPELINE STOCK

SYNC

TIME

PLANT INVENTORY

SYNCHROMODALITY

URRENT	SUPPLY CHAIN SET	-UP	
	PERIOD N	PERIOD N+1	PERIOD N+2

HROMO	DAL SUPPLY CHAIN SET-UP		
	PERIOD N	PERIOD N+1	PERIOD N+2
2			

BENEFITS OF SYNCHROMODALITY.

Reduction in transportation cost if slow mode is used for non-urgent volume (40% of total volume). Reduction in warehousing cost due to the shift from warehouse inventory to pipeline inventory.

PREREQUISITES FOR SYNCHROMODALITY.

Supply chain visibility at tactical level through a tactical control tower to design lanes. Supply chain visibility at operational level for the PSCs. Multiple leadtimes set-up in SAP APO DRP system versus one leadtime today.

SYNCHROMODALITY

Eurasian Freight Corridors – A Synchromodal Opportunity

36

Inland Road Transport – Extreme Scenario 100% mode shift to non-road above 300 KM

SOURCE: Eurostat (rail go typeall), (iww go atygo) and (road go ca c) – 2014 EU-28 Data.. For (road go ta dctg) - Averaged Data from the year 2008 to 2014 and SNIC calculations This document may not be duplicated, and the licensed information materials of The Procter & Gamble Company (P&G). This document may not be duplicated, and the licensed information therein may not be used or disclosed in whole or in part for any purpose other than as authorized by P&G. Any use or disclosure in whole or in part of licensed information without the express written permission of P&G is prohibited.

Configurable and Adaptable Trucks

PAST

Rigid Body irrespective of transport mission

Simple Cube Design

CURRENT

FUTURE

Mission Adaptable

Flexible Stacking

Hybrid Driveline

Whole Vehicle Combination Aerodynamics

Trailer Mounted Electric Driveline "Hybrid on Demand"

19/04/2016

TUPPERWARE VEHICLE <u>'FILL'</u> COLLABORATION

>15% less Cost save>2M Tons co₂

Vehicle Cube Fill improvement $55\% \rightarrow 85\%$

by heavy & light mixing

Optimize Warehouse

Productivity

Show Industry Leadership

Way forward...?

Expand partnership

Multi-lane collaboration

Multi Party collaboration

3+ partners (CO3 framework)

Future Market Place

10-30+ partners

Has the time arrived for a new Modular Concept?

IPIC 2016 - 3rd International Physical Internet Conference June 29-July 1, 2016 | Atlanta, GA USA

Reusable Intermediate Containers - RICs ISO-MODULAR REUSABLE CONTAINERS P&G PILOT SUMMARY

Standard Container

Low cost reverse logistics

Financially attractive on E2E basis

OnaliB	Cont B	Oral D	Oral D	Onal-B
Contract of the Art of the Art.	Sectores and Access	standard of the Automation	Construction (Construction)	Manager Conception (1995)
SITALITY H	Oral B	Oral-B VITALITY	Oral D	Oral D
Comit 2		PRECIPION CONTRACTOR		
TRACITY AND	AUEALISY and	VITALITY INC.	VITAL/IV	VITALITY
Oral B	(Oral B)	Oral B	Oral B	Oral-B
TRACTIVE CONTRACTOR	NUTALITY INTO A	WITALITY HER	VITALITY ME	Peddiage many and an
Omle :	Oral B	Oral B	Oral B	Oral B
			VITALITY vela reserver a tree de des	Oral®

High container cube utilization

Low cost option to pack container

Reusable Intermediate Containers - RICs

MODULUSHCA CONCEPT

TODAY

TOMORROW

Reusable Intermediate Containers - RICs

ONODULUSHC

Physical Internet

MODULUSHCA

FUTURE

HARD

RPCs have to be ISO-MODULAR.

UK pallet type EURO pallet type <u>RPCs have to have straight walls.</u>

<u>RPCs have to be Stackable up to 2.40 meters</u>.

when they stack, the top of one RPC connects with the bottom of another to prevent the stack from slipping.

RPCs have to have flat inside surfaces.

RPCs must have the capability to have a lid

This document contains proprietary, confidential, and copyrighted (under the laws of the Urited States and other countries) materials of The Procter & Gamble Company (P&G). This document may not be duplicated, and the licensed information therein may not be used or disclosed in whole or in part for any purpose other than as authorized by P&G. Any use or disclosure in whole or in part of licensed information without the express written permission of P&G is prohibited.

<u>RPCs can be foldable</u> as a way to favour reverse logistics. However rigid walls are an option.

RPCs Lid "ability" We don't need to have every RPC with lid BUT RPCs must have the ability to install a lid in case of specific requirements [e.g. Dangerous Goods].

Protection can be realized through one RPC on top at the other and at the top either we put an empty RPC (if we store them in column) or we put a layer lid that will seal the top layer of the pallet (when we created a pallet of RPCs).

<u>RPCs wall thickness reduction is highly desirable in order to</u> increase the inner dimensions.

<u>RPCs should preferably be hermetic. However, in certain</u> applications could have holes in the walls allowing manual handling

RPCs should preferably be fully interlockable. Interlockability in all dimensions would be desirable.

SOFT

RPCs should be suitable for direct use as a retail merchandising unit.

RPCs must not be nestable.

Reusable Intermediate Containers - RICs

Current State VSM

Physical Internet

P&G CHALLENGE

Temperature controlled containers/trucks are **EXPENSIVE** and not always **AVAILABLE.**

Most P&G products require just protection from T peaks.

SOLUTION

Battery operated Ice cube reservoir in normal trucks & seatainers with thin distribution blanket. **C+D with Sunwell**^c

30% less CO₂ Low Cost

• **BENEFITS**

Business continuity

The Last mile but not the Least

CO₂ emitted by supermarket shopping

Source: LCA study, P. van Loon, J. Dewaele, L. Deketele - Heriot-Watt University / P&G 30 items/shopping basket - UK B&M supermarket - typical (average) travel behavior (distance, transport mode)

Consumer trip (transport between home & store)
Packaging (store - shopping bag)

Retailer operations (store/ DC /transport)

Manufacturer operations (DC/ transport

IPIC 2016

IPIC 2016 - 3rd International Physical Internet Conference June 29-July 1, 2016 | Atlanta, GA USA

THANK YOU! Everyday Better for People and the Planet

Touching lives, improving life. $P\&G^{M}$

Cooperation experiment

3 persons

Going to the beach

1 person

4 persons

55

Legal Frame work

Fair Gain share

Some insights in gain share

$$\phi_i(v) = \sum_{S \subseteq N \setminus \{i\}} \frac{|S|! (n - |S| - 1)!}{n!} (v(S \cup \{n\}) = \frac{|S|! (n$$

$\{i\}) - v(S)$

NOBEL PRIZE FOR GAIN SHARING FORMULA: SHAPLEY VALUE

$$\phi_i(v) = \sum_{S \subseteq N \setminus \{i\}} \frac{|S|! (n - |S| - 1)!}{n!} (v(S \cup \{i\}) - v)$$

Shapley value is the only gain sharing concept that satisfies all the following fairness properties: **Efficiency**: The complete savings of collaboration are distributed **Monotonicity**: If player A adds more value to every coalition than player B, player A will get a higher payoff **Dummy**: A player that adds no value to any coalition, will receive no payoff > Symmetry: If two players add exactly the same value to every other coalition, they will get the same payoff Individual fairness: No player will suffer from collaboration (cost level after collaboration is not higher then individually, i.e. without collaboration)

v(S))

Shapley solution? The new Passenger should pay 50% of the costs:

- 1)
- (:)

A competitive advantage!

The single passenger is now paying as if he is sharing with another passenger

2) The group of 3 are now paying as if <u>they were 6 passengers</u> sharing the costs !

Note that: a scale of 6 is physically <u>IMPOSSIBLE if you do not COLLABORATE</u>

A SNIC Concept

Physical Internet

3122

